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Abstract

This paper contains some theorems related to the best approximpatinE) to a functiorf in the
uniform metric on a compact sét c C by rational functions of degree at mastWe obtain results
characterizing the relationship betwegpn(f; K) andp, (f; E) in the case when complements of
compact set& andE are connected is a subset of the interid2 of E, andf is analytic inQ2 and
continuous ork.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Rational approximation; Degree of rational approximation; Singular number; Hankel operator;
Meromorphic approximation

1. Meromorphic approximation and Hankel operators
1.1. Notation

Let G ¢ C be a bounded domain and IEtbe the boundary o6. We assume that
I' consists of a finite number of closed analytic Jordan curves. Denalg ), 1< p <
oo, the Lebesgue space of measurable functign®n I' with the norm given by
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the formula

1/p
||(p||p:</r|(p(@|p|dé|> .

We use the following notation for the inner product in the Hilbert spagd’):
(0, ¥) = frw(é)J(f)ldil, @, € La(I).

Let Lo (I") be the space of essentially boundediofunctions with the norm
lelloo = eSSrSUHkP(i)I, ¢ € Loo(I).

Denote byE ,(G), 1< p < oo, the Smirnov class of analytic functions GnFor 1< p < oo
the classE |, (G) consists of the functiong for which there is a sequence of domaiGig
with rectifiable boundaries having the following properties:

Gi1CGr. GrcG, |JGi=G
k

and
sup [ lo(@1"1d¢ < oo,
k 0Gy

E~(G) is the class of bounded analytic functions@nThe condition

/q)(é)dézo forall zeC\G
r ¢—z

is necessary and sufficient for a functipre L1(I") to be the boundary value of a function
in the Smirnov clas€1(G) (see[4,9] for more details about the classEg(G)).

Let o be a positive Borel measure with supportsupp F C G.LetL, (o, F),1<q <
00, be the Lebesgue space of measurable functpoos F with the norm

1/q
Ilcollq,a:(/Flw(é)l"dU(i)) .

Denote byJ : E2(G) — Lz(a, F) the embeddingperator. The operatakis given by
restricting an elemenp € E2(G) toF: J¢ = ¢ . Itis not hard to see thaktis a compact
operator.

1.2. Auxiliary results from the theory of Hankel operators

Consider a functiori continuous onl". We define theHankel operatord = Ar g :
E2(G) — E3(G) = La(IN) © E2(G) by

Ar(p) =P_(9f), @€ E2G),

whereP_ is the orthogonal projection fromh,(I") onto Ezl(G). The functionf is called
a symbol of the Hankel operatot ;. We remark thatA  is a compact operator. Let
{sa(Ap)},n =0,1,2,..., be the sequence of singular numbers of the operajo(the
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sequence of eigenvalues of the operam’;A f)l/z whereA* EZL(G) — E2(G) is the
adjoint of A ¢). We assume thab(A s) >s1(Af) > - >Sn(Af) >.

Let M,,(G) be the following class of meromorphlc (Bfunctlons Wlth at mosh poles
(counted with multiplicities):

Mu(G)=1{h:h=p/q, pe Ex(G), degg<n, q # 0}.
Let 4, (f; G) be the least deviation dfin the spacd...(I") from the class\,,(G):
A,(f: G) = inf — hl|oso.
(f:G) hejlw G [ f [loo

n

The AAK theorem (segl]) asserts that fo6 = {z : |z| < 1}andf € C(I'), we have
Sn(Af)ZAn(f;G)7 n=0,1,2,....

In the case whefs is a bounded domain arfdconsists oN closed analytic Jordan curves
the following generalization of the AAK theorem was proved by the author[EEe
Let f be continuous of'. Then

sn(Ap)<A,(f:G), n=0,1,2..., 1)
and,

Apsn-1(f; G)<sp(Ayp), for n>=N—1. (2
There exist (sef®]) orthonormal systemgy,,}, {o,}, n =0, 1,2, ..., of eigenfunctions of

the operato(A’}Af)l/2 corresponding to the sequence of singular numpg(si 1)}, n =
0,1,2,..., suchthat

(Gnf — P)(©)dS = s,(Ap)a,(O)|dS| ae.on T,
(o f — ﬁn)(i) dé¢ = Sn(Af)Qn(éﬂ d¢|] ae.on T,
wherep,, , € E2(G). Clearly,
/F(Clidj)(é)f(f)dé:si(Af)éi,jv i,j=01,2,..., (3)

whered; ; is the Kronecker symbol.
We will need the following theorem (s¢€)):

Theorem. Let G be a bounded domain whose boundary consists of a finite humber of

closed analytic Jordan curveket f be continuous off and letgy, ..., ¢, € E2(G) and
Yo, - -, ¥, € E2(G). Thenthe following estimate of the absolute value of a Hadamard-type
determinant of orden + 1 is valid:
/ (o (O de|
i,j=0
1 1/2 /2
< ITseap (16or 0l iz0) (1001908 120)” )
k=0

(with the Gram determinants of order+ 1 on the right).
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1.3. Estimates of errors in best meromorphic approximation

Let G be a bounded domain with boundakyconsisting ofN closed analytic Jordan
curves. Consider a functidicontinuous ord". We assume th&tan be extended analytically
onG \ F, whereF is a compact subset @&. LetG1, G1 C G, be a domain bounded by
a finite number of closed analytic Jordan curves which contains the comp&ct3ehote
by I'1 the boundary 06 1.We assume thdt andl’; are positively oriented with respect to
G andG1, respectively. Let/ : Eo(G) — La(|dt|, I'1) be the corresponding embedding
operator.

Theorem 1. We have

n

[[sAre)< H sk(Ar.Gy) H st

k=0 k=0

We single out a result that follows directly from Theorértsee (1) and (2)).

Corollary 2. LetN >2andn>N — 1.We have
N-2

1‘[ sk(A£.G) H Aiin-1(f: G)< H A (f G1>1"[ SECT).

k=N-1

In the case whefs is a simply connected domain we obtain the following:

Corollary 3. Let G be a simply connected domalinen

[]4cr: O] aess G [ si).
k=0 k=0 k=0

Proof of Theorem 1. Let {gq,}, {on},n = 0,1,2,..., be the orthonormal systems of
eigenfunctions of the operat(m* A,cG)l/2 correspondmg to the sequence of singular
numberss,(Ar )}, n =0,1,2,..., and satisfying the following equations (see (3)):

/r(qz'otj)(if)f(é)di =si(Are)oij, 1,j=01,2.... ®)

It follows immediately from (5) that the product of singular numbei® £ 6)s1(Af6) . ..
sn(A s .c) can be written as a determinant of ordef 1.

[]sAre) = ’f(qzd;)(g)f(f)di
k=0

i,j=0
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Since the functiong;, o;,i, j = 0,1,2, ..., belong toE>(G) andf is analytic onG \ F,
the formula

n

ITSHAmﬁz‘/(mwXﬂfmdt (6)
k=0 I

i.j=0

can be written for the product of singular numbers.

Let Az, : E2(G1) — Ezl(Gl) be the Hankel operator constructed frohy), r €
I'1. Denote by(q;, g;)2,14:) and (g;, ¢;) the inner products of; andg; in the spaces
Lo(]dt|, I'1) andLa(I), respectively. From (6), by (4), we obtain that

n n . 12
1_[ sp(Arc) < H sn(AfGy) (’(l]i,q]‘)z,|dz||i,j=o) (’(fxl, )2, \dr\’, = 0) .
k=0 k=0

By the Weyl-Horn theorem (see, for examg®,Lemma 3.1]),

@i ap2ianl; j—o = Ui Tapzianl; o

n
< ]_[ S]?(J)|(Qi’QJ')‘?,j:0

k=0
and

|(0517O(J)2|dt||ll -0 |(J0517J05/)2\dt\|,j -0

<[] st apl} i—o.

k=0
Taking into account now that;, «;) = (¢i, ¢;) = J; j, we get

1_[ sk(AfG) < l_[ sk(Af.Gy) 1_[ s2(J) - (‘(%JI;)L j= 0)1/2(’(061',0(]')|Zj:o)1/2

k=0 k=0
n
<mewmﬂim.m
k=0 k=0

2. Rational approximation
2.1. Estimates of errors in best rational approximation

Let E be an arbitrary compact set in the extended complex plar@onsider a function
f continuous ork. For any nonnegative integardenote byp, (f; E) the best rational
approximation off in the uniform metric ork by rational function of order at most In
other words,

p,(fi E) = rlnf f=rlle,
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where|| - || g is the supremum norm dband the infimum is taken in the class of all rational
functions of order at most:

R, ={r:r=p/q, degp<n, degg <n, g # 0}.

If f is analytic onC \ F, whereF is a compact set in the extended complex pl@rsich
that F N E = ¢, then (seg6])

lim sup p,,(f: EYY/"<1/p

n—oo
and
n 1/”2
lim sup(]‘[ i (f E>) <1/p. @
n—oo k:0

wherep = exp(1/C(E, F)) andC(E, F) denotes the condenser capacity associated with
the condense(E, F) (see, for exampld3]).

Let E ¢ C be a compact set with connected complemgn/ # ¢. We assume that the
interior Q2 of E is not empty. Denote b§E the boundary ok. Letf be a function analytic
in Q and continuous o&. We assume théats not a rational function. It follows easily from
thisthatp, (f; E) #0foralln =0,1,2,....

Let K c C be a compact set and létbelong to the interiof2 of E. We assume that the
complement of K is connected.

Theorem 4. We have
n n 1/112
lim sup(]"[ oK) [ T o E)) < exp(—1/C@E. K)). (8)
=00 \k=0 k=0

As a consequence of Theorénwe obtain the following result characterizing the asymp-
totics behavior op,,(f; K)/p,(f; E) asn — oo.

Corollary 5. The following inequality is valid:

(Pn(f; K)
Pu(f; E)

Proof of Theorem 4. We first assume tha€ andE are bounded by finitely many disjoint
closed analytic Jordan curves. Since quantipigs’; K), p,,(f; E),n =0,1, ..., and the
condenser capacity (0E, K) are invariant under linear fractional transformations of the
extended complex plar@we confine ourselves to the case when the compleme&fibie
domainG) is bounded.

It is not hard to see tha® = C \ U. Moreover, sincéJ is connected(/ is a continuum
(a closed connected set with at least two points). Hef2cepnsists of a finite number of
simply connected domains bounded by closed analytic Jordan curves.

lim inf

n—o00

1/n
) < exp—2/C(OE, K)).
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Let w(z) be the solution of the Dirichlet problem constructed in the opertsgtk
with respect to boundary data equal 1@k and 0 ondQ. It will be assumed thab (z) is
extended by continuity t€ : w(z) = 1 forz € K, andw(z) = 0 forz € U. For arbitrary
e,WithO < e < 1,letG(e) = {z: w(z) < e} andy(e) = {z : w(z) = &}.

Using the maximum principle for harmonic functions we can conclude that every con-
nected component of the open 6at), 0 < ¢ < 1, contains at least one pointGt Sincell
is a continuum, it follows from this tha& (¢) is a domain. We assume thdt), 0 < ¢ < 1,
is positively oriented with respect to the domdirie). We distinguish component3; of
Qsuch thatQ; N K # . Let @' = | J; ;. Note thatQ' C Q. By the properties of the
condenser capacity (see, for exampi8g]),

C(0Q,0K) = C(0Q,0K) = C(0Q, K).
Sinced2 = JE, we obtain from this that
C(0Q,9K) = C(PE, K).
We have (see, for examplig,8])

lim  C(e). 7(e1) = €0 0K).

e—>0,61—>

So,
lim L C(y(e), y(e1)) = C(OE, K). )

e—>0,61—
Fix0 < ¢ < g1 < 1. We assume that andeq are choosen close enough to 0 and 1,
respectively, such thais) andy(e1) consist of disjoint closed analytic Jordan curves. Let
(1) consist ol closed analytic Jordan curves. Denote byH>(G (e1)) — La(| dt], y(g))
the corresponding embedding operator. Siris@nalytic inC \ U, and sincd/ c G(g) C
G(e) C G(ey), it follows from Corollary2, that forn >N — 1

[1 Axenv-1(f; G <C [T a4(f; G [ s, (10)

k=N-1 k=0 k=0

whereC is a positive quantity not depending on Here and in what follows denote by
C, Cq, ..., positive quantities not depending an
Let us estimate

[ 2(f: Gy,
k=0

It follows from the definitions o« (f; G(¢)) andp,(f; y(e)) that
Ak (f5 G(e) < pp(f p(e)).

Sincey(e) C E, we can write

pr(fi (@) <p(f: E).
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So,
[ 4k(r: Gen< [ pls: B
k=0 k=0
and, by (10),
[T dcenvalr:Gey<C[] ot B[] sP). (11)
k=N-1 k=0 k=0

Fix a nonnegative integése. For an arbitrary rational function € R; with poles outside
7(¢) and any functiorp € E.(G (1)) we have by the Cauchy formula

(f =r—=—9)(&d¢
7(en) ¢-z ’

1
"= NE) = 5=

K, 12
2mi < (12)

wherer’ is the sum of the principal parts ofcorresponding to poles oflying in G(e1).
We remark that’ € Ry. Estimating the integral in (12), we get

o (fi SIS =k <Callf =7 = @llos.

Sincer is an arbitrary function irR; with poles outside(e1) andg is an arbitrary function
iN Eco(G(e1)),

pr(f; K)<C14ik(f; G(e1)).

From this, by (11), we can write
[Tocrs <] petrs BT s2. (13)
k=0 k=0 k=0

Using the result of Zaharjuta and Skiba ($&@]),

lim si/™(J) = exp(—1, C((e), (1))

from (13) we get

n n 1/n
lim sup(H pe (£ K) [T ewss E)) < exp(—1/C (), p(en)).
n—00 k=0

k=0

Lettinge — 0 ande1; — 1, we obtain (see (9)) that

n n 1/n
lim sup(l‘[ pu(f: K) / [T eets: E)) <exp-1/C@E K).  (14)
n—>00  \; g

k=0
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We now get rid of the condition th& andE are bounded by finitely many closed analytic
Jordan curves. Consider the general case whandE are arbitrary compact sets satisfying
the conditions:

(@ K C _
(b) G =C\ K andU = C\ E are connected/ # (.

Sincel is the complement d&, 0E = dU, andE = 0E U Q, it follows thatU = U UOE
and( coincides with the complement of a closed domidinUsing now the fact that is
the complement o, and(2 is the complement of/, we can write

0Q = U C 0U = OF. (15)

SinceU is a continuumg consists of an at most countable number of simply connected
domains. We distinguish componer?s of Q such that2; N K # (. SinceQ is an open
cover of the compact s&, it follows that there is only a finite number of such components
Q;. LetQ =, Q;. We remark thaf2’ C Q. By the properties of the condenser capacity

C(0Q,K) = C(0Q, K).
So, by (15), we can write
C(0Q,K)<C(IE, K). (16)

Let B = C\ €. SinceU is a continuum, we can conclude ttiis a continuum. Moreover,
sinceK C @, BN K = @. We construct a sequence of compadts,} and{B,,}, m =
1,2,..., bounded by finitely many closed analytic Jordan curves, that tends monotonically
to K andB, respectively:

o0
K C Ky CKp_1, ﬂszK,

m=1
o

B C By C Bp_1, ﬂ B,, = B.
m=1

We assume that for ath, B,, is a continuum, the complement &f,, is connected, and
B.NK, =0.

Fix a positive integem. LetV,, be the closure of the complement®yf, in the extended
complex planeC. It is easy to see that,, c Q' C E. SinceB,, is a continuum, the com-
plement ofV,, is connected. Using the relatiokisC K,, andV,, C E, for all nonnegative
integersn andmwe can write

Pn(fs K)Y<p,(f: Kim) (17)

and

Pn(fs Vi) <p,(f; E). (18)
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Sincek,, andV,, are bounded by finitely many closed analytic Jordan curves, with the help
of estimate (14) we get

n n 1/n
lim SUp(H pk(f; Km) 1_[ pk(f? Vm)) < eXp(—l/C@Vm Km))
k=0 k=0

n—o00

This implies (see (17) and (18))

n n 1/n
lim sup(ﬂ o f:K) [ T pats E)) < eXp—1/C@Vm, Kn).  (19)
k=0 k=0

n—o0

By properties of the condenser of the capacity we have

lim C(0Vi, K;y) = C(0Q, K).

m—0Q

So, we can pass to the limit on the right-hand side of (19), obtaining

n—o0

n n 1/n
iim sup(]"[ RGLSYAN G E)) < exp—1/COQ. K)).
k=0 k=0

Using now (16), we get (8). I

Letafunctiorf be analyticinanopen sbtand letE C D be acompact setwith connected
complement. We assume tHatconsists of a finite number of domaifs, i = 1,...,y,
andD; N E # ¢ for all i. Denote byF the complement db in the extended complex plane
C. It is assumed tha is a continuum. It follows from this that the logarithmic capacity
cap(F) (see[3,8]) of F is positive and- is a regular compact set in the sense of potential
theory.

Letp = exp(l/C(E, F)), whereC(E, F) is the condenser capacity associated with the
condense(E, F). We assume that the logarithmic capacity @pis positive. From this
and the fact that cap(F) 9 we can conclude that (s¢&8]) thatC(E, F) > 0.

Denote byw(z) the solution of the generalized Dirichlet problem with the boundary
function equal to 1 o@F and to 0 ondE. For eachi = 1, ..., y, the functionw(z) is
harmonic in the domaimD; \ E. It is assumed that the compact &ets regular. Since
E andF are regular compacts;(z) is continuous oD \ E; w(z) = 1,z € 0D = 0F,
andw(z) = 0,z € JE. It will be assumed that(z) is extended by continuity t€:
w(z) = 1forz € Fandw(z) = 0 for z € E. For arbitraryr, with 1 < r < p, let
E(r) ={z : w@<Inr/Inp} andy(r) = {z : w(z) = Inr/Inp}. We remark that, by
properties of the condenser capacity (see, for exanthig),

Inp
C(E,y(r)) = l—C(E, F)
nr
and

exp(l/C(E,y(r))) =r. (20)
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Using (7), it is easy to obtain an upper estimate for lim,inf, p, (f; E)*/™
. 1
lim inf p,(f: E)YY"< .
n— o0 p

We conclude this section with the result related to functidmsving the following asymp-
totics of the errors in the best rational approximation:

lim p, (f: E)" = p_12
Theorem 6. Let
1
p?’
wherep = exp(1/C(E, F)). Thenforanyl < r < p,

lim p,(f; E)Y/" =
n—oo

2
Jim p, (f1 EG)Y" = exp(=2/C(E(r). F)) = <%> : (21)
Proof. Since
im_p, (/s YV =
n—oo p
we can write
n 1/n? 1
Jim (1"[ pe(fs E)) =-. (22)
k=0 p

Using (8) and (20), we get

" n 1/n?
lim sup(n px(f E) H pe(f: E(f)))
k=0 k=0

1
< exp(—1/C(E,y(r)) = - (23)

From this, by (22), we obtain

" 1/n?
lim in (H pi(f E(r))) >
k=0

Since

(24)

=1~

C(E(r),F)=C(E,F)/d1—1Inr/Inp)
and

exp(1/C(E(r), F)) = 2

)
r
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we have (see (7)),

. ‘ nt r
limsup [ ] ox(f: E))) < exp=1/C(E(r), F)) = >

n—o00

k=0
So, by (24),
n 1/n?
Jim (1‘[ pilf: E(r») = (25)
k=0
Fix an arbitrary 0< 0 < 1. Choose a sequence of integéts},n = 1,2, 3, ..., such

that 0<k, <n,lim,_  k,/n = 0. Since the sequendg, (f; E(r))},n = 1,2,...1is
nonincreasing,

ky n
(1"[ pi(f E(r))) o (s EGN S T pulfs EG). (26)

k=0 k=0
From (26), on account of (25), we obtain that
#\ 10
lim sup p,, (f: E()M" < (—) :
n—00 14
Letting 0 — 1, we get
2
lim su : ng (Z
PP, (fs E(r))”"< . (27)
n— 00 P

Using now the inequality

kn n
<H (S E(r))) <o " EO) [ ou(fs EGD),

k=0 k=0

wherek, >n, and the same arguments as above it is not hard to prove the following:
N\ 2
fim inf p, (/3 EG)Y"> (—) |
n— o0 p

which with help of (27) implies the desired equality (21)0J
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