

Available online at www.sciencedirect.com



JOURNAL OF Approximation Theory

Journal of Approximation Theory 133 (2005) 284-296

www.elsevier.com/locate/jat

# On best rational approximation of analytic functions

V.A. Prokhorov\*

Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688-0002, USA

Received 2 March 2004; accepted 8 December 2004

Communicated by Manfred v Golitschek Available online 29 January 2005

#### Abstract

This paper contains some theorems related to the best approximation  $\rho_n(f; E)$  to a function f in the uniform metric on a compact set  $E \subset \overline{\mathbb{C}}$  by rational functions of degree at most n. We obtain results characterizing the relationship between  $\rho_n(f; K)$  and  $\rho_n(f; E)$  in the case when complements of compact sets K and E are connected, K is a subset of the interior  $\Omega$  of E, and f is analytic in  $\Omega$  and continuous on E.

© 2005 Elsevier Inc. All rights reserved.

*Keywords:* Rational approximation; Degree of rational approximation; Singular number; Hankel operator; Meromorphic approximation

## 1. Meromorphic approximation and Hankel operators

# 1.1. Notation

Let  $G \subset \mathbb{C}$  be a bounded domain and let  $\Gamma$  be the boundary of G. We assume that  $\Gamma$  consists of a finite number of closed analytic Jordan curves. Denote by  $L_p(\Gamma)$ ,  $1 \leq p < \infty$ , the Lebesgue space of measurable functions  $\varphi$  on  $\Gamma$  with the norm given by

<sup>\*</sup> Fax: +1 251 460 7969.

E-mail address: prokhoro@jaguar1.usouthal.edu

the formula

$$||\varphi||_p = \left(\int_{\Gamma} |\varphi(\xi)|^p |d\xi|\right)^{1/p}$$

We use the following notation for the inner product in the Hilbert space  $L_2(\Gamma)$ :

$$(\varphi,\psi) = \int_{\Gamma} \varphi(\xi) \overline{\psi}(\xi) |d\xi|, \quad \varphi,\psi \in L_2(\Gamma).$$

Let  $L_{\infty}(\Gamma)$  be the space of essentially bounded on  $\Gamma$  functions with the norm

$$|\varphi||_{\infty} = \operatorname{ess\,sup}_{\Gamma} |\varphi(\xi)|, \quad \varphi \in L_{\infty}(\Gamma).$$

Denote by  $E_p(G)$ ,  $1 \le p \le \infty$ , the Smirnov class of analytic functions on *G*. For  $1 \le p < \infty$  the class  $E_p(G)$  consists of the functions  $\varphi$  for which there is a sequence of domains  $G_k$  with rectifiable boundaries having the following properties:

$$G_{k+1} \subset G_k, \quad \overline{G}_k \subset G, \quad \bigcup_k G_k = G$$

and

$$\sup_k \int_{\partial G_k} |\varphi(\xi)|^p |d\xi| < \infty.$$

 $E_{\infty}(G)$  is the class of bounded analytic functions on G. The condition

$$\int_{\Gamma} \frac{\varphi(\xi) \, d\xi}{\xi - z} = 0 \quad \text{for all} \quad z \in \overline{\mathbf{C}} \setminus \overline{G}$$

is necessary and sufficient for a function  $\varphi \in L_1(\Gamma)$  to be the boundary value of a function in the Smirnov class  $E_1(G)$  (see [4,9] for more details about the classes  $E_p(G)$ ).

Let  $\sigma$  be a positive Borel measure with support supp  $\sigma = F \subset G$ . Let  $L_q(\sigma, F)$ ,  $1 \leq q < \infty$ , be the Lebesgue space of measurable functions  $\varphi$  on F with the norm

$$||\varphi||_{q,\sigma} = \left(\int_F |\varphi(\xi)|^q \, d\sigma(\xi)\right)^{1/q}.$$

Denote by  $J : E_2(G) \to L_2(\sigma, F)$  the *embedding* operator. The operator J is given by restricting an element  $\varphi \in E_2(G)$  to F:  $J\varphi = \varphi_{|F}$ . It is not hard to see that J is a compact operator.

#### 1.2. Auxiliary results from the theory of Hankel operators

Consider a function f continuous on  $\Gamma$ . We define the Hankel operator  $A_f = A_{f,G}$ :  $E_2(G) \to E_2^{\perp}(G) = L_2(\Gamma) \ominus E_2(G)$  by

$$A_f(\varphi) = \mathbf{P}_-(\varphi f), \quad \varphi \in E_2(G),$$

where  $\mathbf{P}_{-}$  is the orthogonal projection from  $L_2(\Gamma)$  onto  $E_2^{\perp}(G)$ . The function f is called a symbol of the Hankel operator  $A_f$ . We remark that  $A_f$  is a compact operator. Let  $\{s_n(A_f)\}, n = 0, 1, 2, \ldots$ , be the sequence of singular numbers of the operator  $A_f$  (the sequence of eigenvalues of the operator  $(A_f^*A_f)^{1/2}$ , where  $A_f^*: E_2^{\perp}(G) \to E_2(G)$  is the adjoint of  $A_f$ ). We assume that  $s_0(A_f) \ge s_1(A_f) \ge \cdots \ge s_n(A_f) \ge \cdots$ .

Let  $\mathcal{M}_n(G)$  be the following class of meromorphic in *G* functions with at most *n* poles (counted with multiplicities):

$$\mathcal{M}_n(G) = \{h : h = p/q, \ p \in E_{\infty}(G), \ \deg q \leq n, \ q \neq 0\}.$$

Let  $\Delta_n(f; G)$  be the least deviation of f in the space  $L_{\infty}(\Gamma)$  from the class  $\mathcal{M}_n(G)$ :

$$\Delta_n(f;G) = \inf_{h \in \mathcal{M}_n(G)} ||f - h||_{\infty}.$$

The AAK theorem (see [1]) asserts that for  $G = \{z : |z| < 1\}$  and  $f \in C(\Gamma)$ , we have

$$s_n(A_f) = \Delta_n(f; G), \quad n = 0, 1, 2, \dots$$

In the case when G is a bounded domain and  $\Gamma$  consists of N closed analytic Jordan curves the following generalization of the AAK theorem was proved by the author (see [5]):

Let f be continuous on  $\Gamma$ . Then

$$s_n(A_f) \leq \Delta_n(f;G), \quad n = 0, 1, 2, \dots,$$
 (1)

and,

$$\Delta_{n+N-1}(f;G) \leqslant s_n(A_f), \quad for \quad n \ge N-1.$$
(2)

There exist (see [6]) orthonormal systems  $\{q_n\}$ ,  $\{\alpha_n\}$ , n = 0, 1, 2, ..., of eigenfunctions of the operator  $(A_f^*A_f)^{1/2}$  corresponding to the sequence of singular numbers  $\{s_n(A_f)\}$ , n = 0, 1, 2, ..., such that

$$(q_n f - p_n)(\xi) d\xi = s_n(A_f)\overline{\alpha_n(\xi)} |d\xi| \quad \text{a.e. on} \quad \Gamma,$$
$$(\alpha_n f - \beta_n)(\xi) d\xi = s_n(A_f)\overline{q_n(\xi)} |d\xi| \quad \text{a.e. on} \quad \Gamma,$$

where  $p_n, \beta_n \in E_2(G)$ . Clearly,

$$\int_{\Gamma} (q_i \alpha_j)(\xi) f(\xi) d\xi = s_i(A_f) \delta_{i,j}, \quad i, j = 0, 1, 2, \dots,$$
(3)

where  $\delta_{i, j}$  is the Kronecker symbol.

We will need the following theorem (see [7]):

**Theorem.** Let G be a bounded domain whose boundary consists of a finite number of closed analytic Jordan curves. Let f be continuous on  $\Gamma$  and let  $\varphi_0, \ldots, \varphi_n \in E_2(G)$  and  $\psi_0, \ldots, \psi_n \in E_2(G)$ . Then the following estimate of the absolute value of a Hadamard-type determinant of order n + 1 is valid:

$$\left| \left| \int_{\Gamma} (\varphi_{i} \psi_{j} f)(\xi) \, d\xi \right|_{i,j=0}^{n} \right| \\ \leqslant \prod_{k=0}^{n} s_{k}(A_{f}) \left( |(\varphi_{i}, \varphi_{j})|_{i,j=0}^{n} \right)^{1/2} \left( |(\psi_{i}, \psi_{j})|_{i,j=0}^{n} \right)^{1/2}$$
(4)

(with the Gram determinants of order n + 1 on the right).

### 1.3. Estimates of errors in best meromorphic approximation

Let *G* be a bounded domain with boundary  $\Gamma$  consisting of *N* closed analytic Jordan curves. Consider a function *f* continuous on  $\Gamma$ . We assume that *f* can be extended analytically on  $G \setminus F$ , where *F* is a compact subset of *G*. Let  $G_1, \overline{G}_1 \subset G$ , be a domain bounded by a finite number of closed analytic Jordan curves which contains the compact set *F*. Denote by  $\Gamma_1$  the boundary of  $G_1$ . We assume that  $\Gamma$  and  $\Gamma_1$  are positively oriented with respect to *G* and  $G_1$ , respectively. Let  $J : E_2(G) \to L_2(|dt|, \Gamma_1)$  be the corresponding embedding operator.

Theorem 1. We have

$$\prod_{k=0}^{n} s_k(A_{f,G}) \leqslant \prod_{k=0}^{n} s_k(A_{f,G_1}) \prod_{k=0}^{n} s_k^2(J).$$

We single out a result that follows directly from Theorem 1 (see (1) and (2)).

**Corollary 2.** Let  $N \ge 2$  and  $n \ge N - 1$ . We have

$$\prod_{k=0}^{N-2} s_k(A_{f,G}) \prod_{k=N-1}^n \Delta_{k+N-1}(f;G) \leq \prod_{k=0}^n \Delta_k(f;G_1) \prod_{k=0}^n s_k^2(J).$$

In the case when G is a simply connected domain we obtain the following:

**Corollary 3.** Let G be a simply connected domain. Then

$$\prod_{k=0}^n \Delta_k(f;G) \leqslant \prod_{k=0}^n \Delta_k(f;G_1) \prod_{k=0}^n s_k^2(J).$$

**Proof of Theorem 1.** Let  $\{q_n\}, \{\alpha_n\}, n = 0, 1, 2, ..., be the orthonormal systems of eigenfunctions of the operator <math>(A_{f,G}^*A_{f,G})^{1/2}$  corresponding to the sequence of singular numbers  $\{s_n(A_{f,G})\}, n = 0, 1, 2, ..., and satisfying the following equations (see (3)):$ 

$$\int_{\Gamma} (q_i \alpha_j)(\xi) f(\xi) d\xi = s_i(A_{f,G}) \delta_{i,j}, \quad i, j = 0, 1, 2, \dots$$
(5)

It follows immediately from (5) that the product of singular numbers  $s_0(A_{f,G})s_1(A_{f,G}) \dots s_n(A_{f,G})$  can be written as a determinant of order n + 1:

$$\prod_{k=0}^{n} s_k(A_{f,G}) = \left| \int_{\Gamma} (q_i \alpha_j)(\zeta) f(\zeta) d\zeta \right|_{i,j=0}^{n}$$

Since the functions  $q_i$ ,  $\alpha_j$ , i, j = 0, 1, 2, ..., belong to  $E_2(G)$  and f is analytic on  $G \setminus F$ , the formula

$$\prod_{k=0}^{n} s_k(A_{f,G}) = \left| \int_{\Gamma_1} (q_i \alpha_j)(t) f(t) \, dt \right|_{i,j=0}^{n} \tag{6}$$

can be written for the product of singular numbers.

Let  $A_{f,G_1} : E_2(G_1) \to E_2^{\perp}(G_1)$  be the Hankel operator constructed from  $f(t), t \in \Gamma_1$ . Denote by  $(q_i, q_j)_{2,|dt|}$  and  $(q_i, q_j)$  the inner products of  $q_i$  and  $q_j$  in the spaces  $L_2(|dt|, \Gamma_1)$  and  $L_2(\Gamma)$ , respectively. From (6), by (4), we obtain that

$$\prod_{k=0}^{n} s_{k}(A_{f,G}) \leq \prod_{k=0}^{n} s_{n}(A_{f,G_{1}}) \left( \left| (q_{i}, q_{j})_{2, |dt|} \right|_{i, j=0}^{n} \right)^{1/2} \left( \left| (\alpha_{i}, \alpha_{j})_{2, |dt|} \right|_{i, j=0}^{n} \right)^{1/2}.$$

By the Weyl–Horn theorem (see, for example, [2, Lemma 3.1]),

$$|(q_i, q_j)_{2,|dt|}|_{i,j=0}^n = |(Jq_i, Jq_j)_{2,|dt|}|_{i,j=0}^n$$
$$\leqslant \prod_{k=0}^n s_k^2(J) |(q_i, q_j)|_{i,j=0}^n$$

and

$$\begin{aligned} (\alpha_i, \alpha_j)_{2,|dt|}\Big|_{i,j=0}^n &= \big| (J\alpha_i, J\alpha_j)_{2,|dt|} \big|_{i,j=0}^n \\ &\leqslant \prod_{k=0}^n s_k^2 (J) \big| (\alpha_i, \alpha_j) \big|_{i,j=0}^n. \end{aligned}$$

Taking into account now that  $(\alpha_i, \alpha_j) = (q_i, q_j) = \delta_{i,j}$ , we get

$$\prod_{k=0}^{n} s_{k}(A_{f,G}) \leq \prod_{k=0}^{n} s_{k}(A_{f,G_{1}}) \prod_{k=0}^{n} s_{k}^{2}(J) \cdot \left( \left| (q_{i}, q_{j}) \right|_{i,j=0}^{n} \right)^{1/2} \left( \left| (\alpha_{i}, \alpha_{j}) \right|_{i,j=0}^{n} \right)^{1/2} \\ \leq \prod_{k=0}^{n} s_{k}(A_{f}; G_{1}) \prod_{k=0}^{n} s_{k}^{2}(J). \quad \Box$$

## 2. Rational approximation

## 2.1. Estimates of errors in best rational approximation

Let *E* be an arbitrary compact set in the extended complex plane  $\overline{C}$ . Consider a function *f* continuous on *E*. For any nonnegative integer *n* denote by  $\rho_n(f; E)$  the best rational approximation of *f* in the uniform metric on *E* by rational function of order at most *n*. In other words,

$$\rho_n(f; E) = \inf_{r \in \mathcal{R}_n} ||f - r||_E,$$

where  $|| \cdot ||_E$  is the supremum norm on *E* and the infimum is taken in the class of all rational functions of order at most *n*:

$$\mathcal{R}_n = \{r : r = p/q, \deg p \leq n, \deg q \leq n, q \neq 0\}.$$

If *f* is analytic on  $\overline{\mathbf{C}} \setminus F$ , where *F* is a compact set in the extended complex plane  $\overline{\mathbf{C}}$  such that  $F \cap E = \emptyset$ , then (see [6])

$$\limsup_{n \to \infty} \rho_n(f; E)^{1/n} \leqslant 1/\rho$$

and

$$\limsup_{n \to \infty} \left( \prod_{k=0}^{n} \rho_k(f; E) \right)^{1/n^2} \leq 1/\rho, \tag{7}$$

where  $\rho = \exp(1/C(E, F))$  and C(E, F) denotes the condenser capacity associated with the condenser (E, F) (see, for example, [3]).

Let  $E \subset \overline{\mathbb{C}}$  be a compact set with connected complement  $U, U \neq \emptyset$ . We assume that the interior  $\Omega$  of E is not empty. Denote by  $\partial E$  the boundary of E. Let f be a function analytic in  $\Omega$  and continuous on E. We assume that f is not a rational function. It follows easily from this that  $\rho_n(f; E) \neq 0$  for all n = 0, 1, 2, ...

Let  $K \subset \overline{\mathbb{C}}$  be a compact set and let *K* belong to the interior  $\Omega$  of *E*. We assume that the complement *G* of *K* is connected.

Theorem 4. We have

$$\limsup_{n \to \infty} \left( \prod_{k=0}^{n} \rho_k(f; K) \middle/ \prod_{k=0}^{n} \rho_k(f; E) \right)^{1/n^2} \leq \exp(-1/C(\partial E, K)).$$
(8)

As a consequence of Theorem 4 we obtain the following result characterizing the asymptotics behavior of  $\rho_n(f; K)/\rho_n(f; E)$  as  $n \to \infty$ .

**Corollary 5.** The following inequality is valid:

$$\liminf_{n \to \infty} \left( \frac{\rho_n(f; K)}{\rho_n(f; E)} \right)^{1/n} \leq \exp(-2/C(\partial E, K)).$$

**Proof of Theorem 4.** We first assume that *K* and *E* are bounded by finitely many disjoint closed analytic Jordan curves. Since quantities  $\rho_n(f; K)$ ,  $\rho_n(f; E)$ , n = 0, 1, ..., and the condenser capacity  $C(\partial E, K)$  are invariant under linear fractional transformations of the extended complex plane  $\overline{C}$  we confine ourselves to the case when the complement of *K* (the domain *G*) is bounded.

It is not hard to see that  $\Omega = \overline{\mathbb{C}} \setminus \overline{U}$ . Moreover, since U is connected,  $\overline{U}$  is a continuum (a closed connected set with at least two points). Hence,  $\Omega$  consists of a finite number of simply connected domains bounded by closed analytic Jordan curves.

Let w(z) be the solution of the Dirichlet problem constructed in the open set  $\Omega \setminus K$ with respect to boundary data equal 1 on  $\partial K$  and 0 on  $\partial \Omega$ . It will be assumed that w(z) is extended by continuity to  $\overline{\mathbf{C}} : w(z) = 1$  for  $z \in K$ , and w(z) = 0 for  $z \in \overline{U}$ . For arbitrary  $\varepsilon$ , with  $0 < \varepsilon < 1$ , let  $G(\varepsilon) = \{z : w(z) < \varepsilon\}$  and  $\gamma(\varepsilon) = \{z : w(z) = \varepsilon\}$ .

Using the maximum principle for harmonic functions we can conclude that every connected component of the open set  $G(\varepsilon)$ ,  $0 < \varepsilon < 1$ , contains at least one point of  $\overline{U}$ . Since  $\overline{U}$  is a continuum, it follows from this that  $G(\varepsilon)$  is a domain. We assume that  $\gamma(\varepsilon)$ ,  $0 < \varepsilon < 1$ , is positively oriented with respect to the domain  $G(\varepsilon)$ . We distinguish components  $\Omega_i$  of  $\Omega$  such that  $\Omega_i \cap K \neq \emptyset$ . Let  $\Omega' = \bigcup_i \Omega_i$ . Note that  $\Omega' \subset \Omega$ . By the properties of the condenser capacity (see, for example, [3,8]),

$$C(\partial \Omega', \partial K) = C(\partial \Omega, \partial K) = C(\partial \Omega, K).$$

Since  $\partial \Omega = \partial E$ , we obtain from this that

$$C(\partial \Omega', \partial K) = C(\partial E, K).$$

We have (see, for example, [3,8])

$$\lim_{\varepsilon \to 0, \varepsilon_1 \to 1} C(\gamma(\varepsilon), \gamma(\varepsilon_1)) = C(\partial \Omega', \partial K).$$

So,

$$\lim_{\varepsilon \to 0, \varepsilon_1 \to 1} C(\gamma(\varepsilon), \gamma(\varepsilon_1)) = C(\partial E, K).$$
(9)

Fix  $0 < \varepsilon < \varepsilon_1 < 1$ . We assume that  $\varepsilon$  and  $\varepsilon_1$  are choosen close enough to 0 and 1, respectively, such that  $\gamma(\varepsilon)$  and  $\gamma(\varepsilon_1)$  consist of disjoint closed analytic Jordan curves. Let  $\gamma(\varepsilon_1)$  consist of *N* closed analytic Jordan curves. Denote by  $J : E_2(G(\varepsilon_1)) \to L_2(|dt|, \gamma(\varepsilon))$  the corresponding embedding operator. Since *f* is analytic in  $\overline{\mathbb{C}} \setminus \overline{U}$ , and since  $\overline{U} \subset G(\varepsilon) \subset \overline{G(\varepsilon)} \subset G(\varepsilon_1)$ , it follows from Corollary 2, that for  $n \ge N - 1$ 

$$\prod_{k=N-1}^{n} \Delta_{k+N-1}(f; G(\varepsilon_1)) \leqslant C \prod_{k=0}^{n} \Delta_k(f; G(\varepsilon)) \prod_{k=0}^{n} s_k^2(J),$$
(10)

where *C* is a positive quantity not depending on *n*. Here and in what follows denote by  $C, C_1, \ldots$ , positive quantities not depending on *n*.

Let us estimate

$$\prod_{k=0}^{n} \Delta_k(f; G(\varepsilon)).$$

It follows from the definitions of  $\Delta_k(f; G(\varepsilon))$  and  $\rho_k(f; \gamma(\varepsilon))$  that

$$\Delta_k(f; G(\varepsilon)) \leq \rho_k(f; \gamma(\varepsilon)).$$

Since  $\gamma(\varepsilon) \subseteq E$ , we can write

$$\rho_k(f; \gamma(\varepsilon)) \leqslant \rho_k(f; E).$$

So,

$$\prod_{k=0}^{n} \Delta_{k}(f; G(\varepsilon)) \leqslant \prod_{k=0}^{n} \rho_{k}(f; E)$$

and, by (10),

$$\prod_{k=N-1}^{n} \Delta_{k+N-1}(f; G(\varepsilon_1)) \leqslant C \prod_{k=0}^{n} \rho_k(f; E) \prod_{k=0}^{n} s_k^2(J).$$
(11)

Fix a nonnegative integer k. For an arbitrary rational function  $r \in \mathcal{R}_k$  with poles outside  $\gamma(\varepsilon)$  and any function  $\varphi \in E_{\infty}(G(\varepsilon_1))$  we have by the Cauchy formula

$$(r' - f)(z) = \frac{1}{2\pi i} \int_{\gamma(\varepsilon_1)} \frac{(f - r - \varphi)(\xi) d\xi}{\xi - z}, \quad z \in K,$$
(12)

where r' is the sum of the principal parts of r corresponding to poles of r lying in  $G(\varepsilon_1)$ . We remark that  $r' \in \mathcal{R}_k$ . Estimating the integral in (12), we get

$$\rho_k(f;K) \leq ||f-r'||_K \leq C_1 ||f-r-\varphi||_{\infty}.$$

Since *r* is an arbitrary function in  $\mathcal{R}_k$  with poles outside  $\gamma(\varepsilon_1)$  and  $\varphi$  is an arbitrary function in  $E_{\infty}(G(\varepsilon_1))$ ,

$$\rho_k(f; K) \leq C_1 \Delta_k(f; G(\varepsilon_1)).$$

From this, by (11), we can write

$$\prod_{k=0}^{n} \rho_{k}(f;K) \leq C_{2}^{n} \prod_{k=0}^{n} \rho_{k}(f;E) \prod_{k=0}^{n} s_{k}^{2}(J).$$
(13)

Using the result of Zaharjuta and Skiba (see [10]),

$$\lim_{n \to \infty} s_n^{1/n}(J) = \exp(-1, C(\gamma(\varepsilon), \gamma(\varepsilon_1)))$$

from (13) we get

$$\limsup_{n \to \infty} \left( \prod_{k=0}^{n} \rho_k(f; K) \middle/ \prod_{k=0}^{n} \rho_k(f; E) \right)^{1/n^2} \leq \exp(-1/C(\gamma(\varepsilon), \gamma(\varepsilon_1))).$$

Letting  $\varepsilon \to 0$  and  $\varepsilon_1 \to 1$ , we obtain (see (9)) that

$$\limsup_{n \to \infty} \left( \prod_{k=0}^{n} \rho_k(f; K) \middle/ \prod_{k=0}^{n} \rho_k(f; E) \right)^{1/n^2} \leq \exp(-1/C(\partial E, K)).$$
(14)

We now get rid of the condition that K and E are bounded by finitely many closed analytic Jordan curves. Consider the general case when K and E are arbitrary compact sets satisfying the conditions:

(a) 
$$K \subset \Omega$$
;  
(b)  $G = \overline{\mathbb{C}} \setminus K$  and  $U = \overline{\mathbb{C}} \setminus E$  are connected,  $U \neq \emptyset$ 

Since *U* is the complement of *E*,  $\partial E = \partial U$ , and  $E = \partial E \cup \Omega$ , it follows that  $\overline{U} = U \cup \partial E$ and  $\Omega$  coincides with the complement of a closed domain  $\overline{U}$ . Using now the fact that *U* is the complement of *E*, and  $\Omega$  is the complement of  $\overline{U}$ , we can write

$$\partial \Omega = \partial U \subseteq \partial U = \partial E. \tag{15}$$

Since  $\overline{U}$  is a continuum,  $\Omega$  consists of an at most countable number of simply connected domains. We distinguish components  $\Omega_i$  of  $\Omega$  such that  $\Omega_i \cap K \neq \emptyset$ . Since  $\Omega$  is an open cover of the compact set K, it follows that there is only a finite number of such components  $\Omega_i$ . Let  $\Omega' = \bigcup_i \Omega_i$ . We remark that  $\Omega' \subset \Omega$ . By the properties of the condenser capacity

$$C(\partial \Omega', K) = C(\partial \Omega, K).$$

So, by (15), we can write

$$C(\partial \Omega', K) \leqslant C(\partial E, K). \tag{16}$$

Let  $B = \overline{\mathbb{C}} \setminus \Omega'$ . Since  $\overline{U}$  is a continuum, we can conclude that *B* is a continuum. Moreover, since  $K \subset \Omega'$ ,  $B \cap K = \emptyset$ . We construct a sequence of compacts  $\{K_m\}$  and  $\{B_m\}$ ,  $m = 1, 2, \ldots$ , bounded by finitely many closed analytic Jordan curves, that tends monotonically to *K* and *B*, respectively:

$$K \subset K_m \subset K_{m-1}, \quad \bigcap_{m=1}^{\infty} K_m = K,$$
  
 $B \subset B_m \subset B_{m-1}, \quad \bigcap_{m=1}^{\infty} B_m = B.$ 

We assume that for all m,  $B_m$  is a continuum, the complement of  $K_m$  is connected, and  $B_m \cap K_m = \emptyset$ .

Fix a positive integer *m*. Let  $V_m$  be the closure of the complement of  $B_m$  in the extended complex plane  $\overline{\mathbb{C}}$ . It is easy to see that  $V_m \subset \Omega' \subset E$ . Since  $B_m$  is a continuum, the complement of  $V_m$  is connected. Using the relations  $K \subset K_m$  and  $V_m \subset E$ , for all nonnegative integers *n* and *m* we can write

$$\rho_n(f;K) \leqslant \rho_n(f;K_m) \tag{17}$$

and

$$\rho_n(f; V_m) \leqslant \rho_n(f; E). \tag{18}$$

Since  $K_m$  and  $V_m$  are bounded by finitely many closed analytic Jordan curves, with the help of estimate (14) we get

$$\limsup_{n \to \infty} \left( \prod_{k=0}^{n} \rho_k(f; K_m) \middle/ \prod_{k=0}^{n} \rho_k(f; V_m) \right)^{1/n^2} \leq \exp(-1/C(\partial V_m, K_m)).$$

This implies (see (17) and (18))

$$\limsup_{n \to \infty} \left( \prod_{k=0}^{n} \rho_k(f; K) \middle/ \prod_{k=0}^{n} \rho_k(f; E) \right)^{1/n^2} \leq \exp(-1/C(\partial V_m, K_m)).$$
(19)

By properties of the condenser of the capacity we have

$$\lim_{m\to\infty} C(\partial V_m, K_m) = C(\partial \Omega', K).$$

So, we can pass to the limit on the right-hand side of (19), obtaining

$$\limsup_{n \to \infty} \left( \prod_{k=0}^{n} \rho_k(f; K) \middle/ \prod_{k=0}^{n} \rho_k(f; E) \right)^{1/n} \leq \exp(-1/C(\partial \Omega', K)).$$

Using now (16), we get (8).  $\Box$ 

Let a function f be analytic in an open set D and let  $E \subset D$  be a compact set with connected complement. We assume that D consists of a finite number of domains  $D_i$ ,  $i = 1, ..., \chi$ , and  $D_i \cap E \neq \emptyset$  for all i. Denote by F the complement of D in the extended complex plane  $\overline{C}$ . It is assumed that F is a continuum. It follows from this that the logarithmic capacity cap (F) (see [3,8]) of F is positive and F is a regular compact set in the sense of potential theory.

Let  $\rho = \exp(1/C(E, F))$ , where C(E, F) is the condenser capacity associated with the condenser (E, F). We assume that the logarithmic capacity  $\operatorname{cap}(E)$  is positive. From this and the fact that  $\operatorname{cap}(F) > 0$  we can conclude that (see [3,8]) that C(E, F) > 0.

Denote by w(z) the solution of the generalized Dirichlet problem with the boundary function equal to 1 on  $\partial F$  and to 0 on  $\partial E$ . For each  $i = 1, ..., \chi$ , the function w(z) is harmonic in the domain  $D_i \setminus E$ . It is assumed that the compact set E is regular. Since E and F are regular compacts, w(z) is continuous on  $\overline{D \setminus E}$ ;  $w(z) = 1, z \in \partial D = \partial F$ , and  $w(z) = 0, z \in \partial E$ . It will be assumed that w(z) is extended by continuity to  $\overline{C}$ : w(z) = 1 for  $z \in F$  and w(z) = 0 for  $z \in E$ . For arbitrary r, with  $1 < r < \rho$ , let  $E(r) = \{z : w(z) \leq \ln r / \ln \rho\}$  and  $\gamma(r) = \{z : w(z) = \ln r / \ln \rho\}$ . We remark that, by properties of the condenser capacity (see, for example, [3,8]),

$$C(E, \gamma(r)) = \frac{\ln \rho}{\ln r} C(E, F)$$

and

$$\exp(1/C(E,\gamma(r))) = r.$$
(20)

Using (7), it is easy to obtain an upper estimate for  $\lim \inf_{n\to\infty} \rho_n(f; E)^{1/n}$ :

$$\liminf_{n \to \infty} \rho_n(f; E)^{1/n} \leqslant \frac{1}{\rho^2}.$$

We conclude this section with the result related to functions f having the following asymptotics of the errors in the best rational approximation:

$$\lim_{n \to \infty} \rho_n(f; E)^{1/n} = \frac{1}{\rho^2}.$$

Theorem 6. Let

$$\lim_{n \to \infty} \rho_n(f; E)^{1/n} = \frac{1}{\rho^2},$$

where  $\rho = \exp(1/C(E, F))$ . Then for any  $1 < r < \rho$ ,

$$\lim_{n \to \infty} \rho_n(f; E(r))^{1/n} = \exp(-2/C(E(r), F)) = \left(\frac{r}{\rho}\right)^2.$$
 (21)

Proof. Since

$$\lim_{n \to \infty} \rho_n(f; E)^{1/n} = \frac{1}{\rho^2},$$

we can write

$$\lim_{n \to \infty} \left( \prod_{k=0}^{n} \rho_k(f; E) \right)^{1/n^2} = \frac{1}{\rho}.$$
 (22)

Using (8) and (20), we get

$$\lim_{n \to \infty} \sup \left( \prod_{k=0}^{n} \rho_k(f; E) \middle/ \prod_{k=0}^{n} \rho_k(f; E(r)) \right)^{1/n^2} \leq \exp(-1/C(E, \gamma(r))) = \frac{1}{r}.$$
(23)

From this, by (22), we obtain

$$\liminf_{n \to \infty} \left( \prod_{k=0}^{n} \rho_k(f; E(r)) \right)^{1/n^2} \ge \frac{r}{\rho}.$$
(24)

Since

$$C(E(r), F) = C(E, F)/(1 - \ln r / \ln \rho)$$

and

$$\exp((1/C(E(r), F)) = \frac{\rho}{r},$$

we have (see (7)),

$$\limsup_{n \to \infty} \left( \prod_{k=0}^n \rho_k(f; E(r)) \right)^{1/n^2} \leq \exp(-1/C(E(r), F)) = \frac{r}{\rho}.$$

So, by (24),

$$\lim_{n \to \infty} \left( \prod_{k=0}^{n} \rho_k(f; E(r)) \right)^{1/n^2} = \frac{r}{\rho}.$$
 (25)

Fix an arbitrary  $0 < \theta < 1$ . Choose a sequence of integers  $\{k_n\}$ ,  $n = 1, 2, 3, \ldots$ , such that  $0 \leq k_n \leq n$ ,  $\lim_{n\to\infty} k_n/n = \theta$ . Since the sequence  $\{\rho_n(f; E(r))\}$ ,  $n = 1, 2, \ldots$  is nonincreasing,

$$\left(\prod_{k=0}^{k_n} \rho_k(f; E(r))\right) \rho_n^{n-k_n}(f; E(r)) \leqslant \prod_{k=0}^n \rho_k(f; E(r)).$$
(26)

From (26), on account of (25), we obtain that

$$\limsup_{n \to \infty} \rho_n(f; E(r))^{1/n} \leqslant \left(\frac{r}{\rho}\right)^{1+\theta}$$

Letting  $\theta \to 1$ , we get

$$\limsup_{n \to \infty} \rho_n(f; E(r))^{1/n} \leqslant \left(\frac{r}{\rho}\right)^2.$$
(27)

Using now the inequality

$$\left(\prod_{k=0}^{k_n} \rho_k(f; E(r))\right) \leqslant \rho_n^{k_n - n}(f; E(r)) \prod_{k=0}^n \rho_k(f; E(r)),$$

where  $k_n \ge n$ , and the same arguments as above it is not hard to prove the following:

$$\liminf_{n \to \infty} \rho_n(f; E(r))^{1/n} \ge \left(\frac{r}{\rho}\right)^2,$$

which with help of (27) implies the desired equality (21).  $\Box$ 

## References

- V.M. Adamyan, D.Z. Arov, M.G. Kreĭn, Analytic properties of Schmidt pairs, Hankel operators, and the generalized Schur–Takagi problem, Mat. Sb. 86 (128) (1971) 34–75 (English transl. in Math. USSR Sb. 15 (1971)).
- [2] I.Ts. Gokhberg [Israel Gohberg], M.G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Nauka, Moscow, 1965 (English transl., American Mathematical Society Providence, RI, 1969).

- [3] N.S. Landkof, Foundations of Modern Potential Theory, Nauka, Moscow, 1966 (English transl., Springer, Berlin, 1972).
- [4] I.I. Privalov, Boundary Properties of Analytic Functions, 2nd ed., GITTL, Moscow, 1950 (German transl., VEB Deutscher Verlag Wiss, Berlin, 1956).
- [5] V.A. Prokhorov, On a theorem of Adamyan, Arov, and Krein, Mat. Sb. 184 (1993) 89–104 (English transl. in Russian Acad. Sci. Sb. Math. 78 (1994)).
- [6] V.A. Prokhorov, Rational approximation of analytic function, Mat. Sb. 184 (1993) 3–32 (English transl. in Russian Acad. Sci. Sb. Math. 78 (1994)).
- [7] V.A. Prokhorov, On Estimates of Hadamard Type Determinants and Rational Approximation, Advances in Constructive Approximation, Vanderbilt, 2003 (Modern Methods in Mathematics, Nashboro Press, Brentwood, 2004).
- [8] E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, Springer, Heidelberg, 1997.
- [9] G.Ts. Tumarkin, S.Ya. Khavinson, On the definition of analytic functions of class E<sub>p</sub> in multiply connected domains, Uspekhi Mat. Nauk 13 1 (79) (1958) 201–206 (Russian).
- [10] V.P. Zaharjuta, N.T. Skiba, Estimates of the n-widths of certain classes of functions that are analytic on Riemann surfaces, Mat. Zametki 19 (6) (1976) 899–911.